Требование безопасности

Эксплуатация изделия должна осуществляться в соответствии с требованиями, изложенными в руководстве по эксплуатации.

Перед установкой необходимо убедиться в отсутствии внешних повреждений устройства.

Изделие, имеющее внешние механические повреждение, эксплуатировать запрещено.

Не устанавливайте изделие без защиты в местах где возможно попадания воды или солнечных лучей.

Изделие должно устанавливаться и обслуживаться квалифицированным персоналом.

При подключении изделия необходимо следовать схеме подключения.

Гарантийные обязательства

Гарантийный срок эксплуатации изделия - 36 месяцев с даты продажи.

Срок службы 10 лет.

При отсутствии даты продажи гарантийный срок исчисляется с даты изготовления

СООО «Евроавтоматика ФиФ» гарантирует ремонт или замену вышедшего из строя изделия при соблюдении правил эксплуатации и отсутствии механических повреждений.

В гарантийный ремонт не принимаются:

- изделия, предъявленные без паспорта предприятия;
- изделия, бывшие в негарантийном ремонте;
- изделия, имеющие повреждения механического характера;
- изделия, имеющие повреждения голографической наклейки.

Предприятие-изготовитель оставляет за собой право вносить конструктивные изменения, без уведомления потребителя, с целью улучшения качества и не влияющие на технические характеристики и работу изделия.

Условия транспортировки и хранения

Транспортировка изделия может осуществляться любым видом закрытого транспорта, обеспечивающим сохранение упакованных изделий от механических кранение изделия должно осуществляться в упаковке производителя в закрытых помещениях с естественной вентиляцией при температуре окружающего воздуха от минус 50° до плюс 50°С и относительной влажности не более 80% при температуре +25°С.

ВНИМАНИЕ!

Перед подключением изделия к электрической сети (в случае его хранения или транспортировки при низких температурах), для исключения повреждений вызванных конденсацией влаги, необходимо выдержать изделие в теплом помещении не менее 2 ч.

Изготовитель поставляет ОМ-630-1 со следующими параметрами:

- вариант расчета мощности	3
- верхний порог напряжения	260 B
- нижний порог напряжения	160 B
- время отключения по верхнему поро	огу 0,3 с
- время отключения по нижнему порог	-y 10 c
- режим работы реле	с одной нагрузкой
- счетчик количества отключений	не установлен
- регуляторы	включены

Ссылки для скачивания ПО:

Hyper terminal

Драйвер FTDICDM

Не выбрасывать данное устройство вместе с другими отходами!

В соответствии с законом об использованном оборудовании, бытовой электротехнический мусор можно передать бесплатно и в любом количестве в специальный пункт приема. Электронный мусор, выброшенный на свалку или оставленный на лоне природы, создает угрозу для окружающей среды и здоровья человека.

Свидетельство о приемке

Ограничитель мощности ОМ-630-1 изготовлен и принято в соответствии с требованиями ТУ ВУ 590618749.020-2013, действующей технической документации и признан годным для эксплуатации.

Дата выпуска	Дата продажи		

Драгоценные металлы отсутствуют!

Ограничитель мощности

OM-630-1

Руководство по эксплуатации

ЕВРОАВТОМАТИКА **« [-2 [-»**]

Служба технической поддержки:

РБ г. Лида, ул. Минская, 18A, men./факс: + 375 (154) 65 72 57, 60 03 80, + 375 (29) 319 43 73, 869 56 06, e-mail: support@fif.by

Управление продаж:

PБ г. Лида, ул. Минская, 18A, men./факс: + 375 (154) 65 72 56, 60 03 81, + 375 (29) 319 96 22, (33) 622 25 55, e-mail: sales@fif.by

Назначение

Трехфазный ограничитель мощности ОМ-630-1 предназначен для непрерывного контроля потребляемой от сети питания мощности и отключения нагрузки при превышении ее свыше установленного значения и защиты цепей питания от короткого замыкания. Ограничитель защищает так же потребителей электроэнергии (нагрузку) от перепадов напряжения, возникающих в 3-х фазных сетях при обрыве нулевого провода.

Защитные функции

- защита от перегрузки по току;
- защита от циклической перегрузки;
- защита от работы при пониженном и повышенном напряжении;
- защита при обрыве нулевого провода.

Технические характеристики

Напряжение питания, В	3x(50450) + N
Диапазон контролируемой мощности, кВт	550
Дискретность установки мощности (грубо), кВт	5
Дискретность установки мощности (точно), кВт	0,5
Задержка отключения при перегрузке	
по мощности (Toff), с	1240
Задержка повторного включения	
нагрузки (Ton), c	23600
Диапазон контролируемых напряжений, В:	
- нижний	160
- верхний	260
Время срабатывания (верх./нижн. порог напряже	ния), с: 0,5-20
Задержка отключения при перегрузке по току, с	0,1
Максимальный ток контактов реле, А 2х	8 AC-1 / 250 B AC
Максимальный ток катушки контактора, А	2x3 AC-15
Контакт	2NO/NC
Погрешность измерения, %:	
- напряжения в диапазоне 50300 B	≤2
 тока* в диапазоне 3100 A 	≤3
Диаметр сквозных каналов встроенных	
трансформаторов тока, мм	10,5
Степень защиты	IP20
Степень загрязнения среды	2
Категория перенапряжения	III
Диапазон рабочих температур, °С	-25+50
Подключение винтовы	ые зажимы 2,5мм ²
Момент затяжки винтового соединения, Нм	0,5
Габариты (ШхВхГ), мм	105x90x65
Тип корпуса	6S
Масса, кг	0,341
Монтаж на	а DIN-рейке 35мм
Код ЕТІМ	EC001443
Артикул	EA03.001.008

^{*}При токах более 180 А погрешность измерения возрастает до 10%.

Комплект поставки

Ограничитель мощности ОМ-630-11	ШТ.
Руководство по эксплуатации1	ШТ.
Упаковка1 г	ШТ.

TY BY 590618749.020-2013

Принцип работы

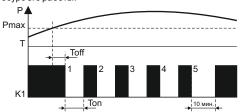
Ограничитель контролирует величину напряжения и величину потребляемого тока нагрузки, вычисляет значение потребляемой мощности отдельно в каждой фазе и обрабатывает эти значения в соответствии с выбранным алгоритмом работы. При повышении значения мощности свыше установленного значения нагрузка отключается от сети на установленное время. По истечении этого времени она автоматически подключается к сети питания. Нагрузка подключается к сети питания через трехфазный контактор или автоматический выключатель с моторприводом, которым управляет исполнительное реле ограничителя. Мощность, время отключения при перегрузке и время повторного включения устанавливается переключателями на передней панели или при настройке с помощью ПК.

Защита нагрузки от перепадов напряжения в сети питания

Ограничитель измеряет напряжение в каждой из фаз и при выходе его за установленные пределы происходит отключение нагрузки от сети питания. Пороги отключения и временные параметры устанавливаются потребителем при программировании параметров при подключении компьютера (Приложение 3, пункт 1.2).

Отключить функцию реле напряжения можно установкой перемычки на клеммах 7-9.

Защита нагрузки при обрыве нулевого провода


При обрыве нулевого провода в месте подключения ограничителя он обесточивается и отключает нагрузку без временной задержки. При обрыве его в другом месте (на вводе в здание, на отдельном этаже и т.п) из за возникающих перепадов напряжения отключение происходит в соответствии в временем отключения по порогам напряжения. (см. Приложение 3. пункт 1.2).

Защита от перегрузки по току

Ограничитель защищает питающую сеть от перегрузки по току и при коротком замыкании в нагрузке. Величина тока, при котором отключается нагрузка, рассчитывается исходя из установленного значения мощности. При превышении этого значения в 6 раз нагрузка отключается за время не более 0,1 секунды. Первый раз на 30 секунд, затем, если перегрузка продолжается, на 30 минут.

Таймер для защиты питающей сети и контактов контактора от циклической перегрузки по току

Если отключение при перегрузке по мощности произошло 5 раз подряд за установленный отрезок времени и при этом нагрузка на питающую сеть не снижается, то ОМ-630-1 блокирует подключение нагрузки к сети питания на 10 минут, что предотвращает циклическое включение/ отключение контактора управления нагрузкой и повышает ресурс его работы.

Счётчик количества отключений нагрузки

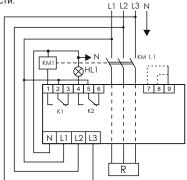
Встроенный счетчик количества отключений нагрузки при перегрузке по мощности: в ОМ-630-1 может быть установлено допустимое количество (счётчик) отключений нагрузки при перегрузке по мощности. При превышении этого значения блокируется подключение нагрузки к сети питания. Сброс счетчика осуществляется установкой переключателя Тоff в положение «С» и его возвратом в исходное положение.

Значение счётчика C=1-255 устанавливается потребителем при программировании параметров с помощью компьютера (см. Приложение 3, пункт 1.7).

Отключение органов управления на лицевой панели

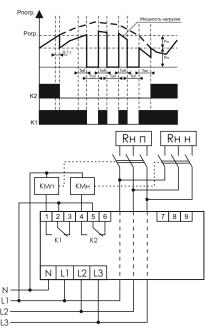
В ОМ-630-1 предусмотрено программное отключение органов управления на лицевой панели изделия (установка мощности и временных параметров). Это предотвращает несанкционированное изменение параметров посторонними лицами.

Сохранение в энергонезависимой памяти причины отключения нагрузки, считывание информации при подключении компьютера (см. Приложение 3, пункт 2)


Сохранение работоспособности при питании от одной фазы

Ограничитель сохраняет работоспособность при питании рт одной фазы даже при снижении напряжения в ней до 50 В.

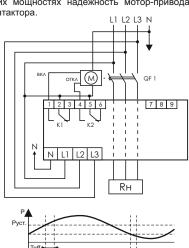
Режимы работы

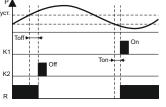

Выбор режима работы устанавливается потребителем при программировании параметров с помощью компьютера (см. Приложение 3, пункт 1.6).

Режим 1 – управление одной нагрузкой. Реле К1 управляет нагрузкой, реле К2 служит для сигнализации перегрузки по мощности.

Режим 2 — работа с двумя нагрузками. Нагрузка разбивается на две части, приоритетную Rn, отключать которую нежелательно и неприоритетную Rн. Реле К1 управляет приоритетной, а реле К2 неприоритетной нагрузкой. При перегрузке отключается Rн без временной задержки. Если перегрузки нет, Rн-отключена, Rn-подключена. Если перегрузка продолжается, Rn отключается в соответствии с установленным временем Toff. При снижении потребляемой мощности Rn подключается через время Ton, затем через это же время подключается и нагрузка Rн.

Преимущества режима: нет полного отключения нагрузки от сети питания. При этом суммарная мощность потребителей может быть выше мощности, выделенной на объект.




Режим 3 — работа с автоматическими выключателями с мотор-приводом.

Реле K1 выдает импульс «ON» на включение нагрузки, реле K2 импульс «OFF» на выключение. Длительность импульса 5 с.

Преимущества режима:

Нет потребления мощности от сети питания в отличие от режима работы с применением контакторов. Мощность расходуется только в режиме переключения. Нет шума и «гудения», характерного для катушек контакторов. При больших мощностях надёжность мотор-привода выше, чем контактора.

2.3 Отключение при снижении напряжения в фазах U min=160.00V, T=10.0 S, U max=260.00V, T=0.5 SP= 5000W, Lock=No; Power count mode=3 Hysteresis(Low power level)=99 % 2s, T_off= 1s. Lock=No T on= Relay output mode=0 0, Enable=No Counter: Passes= Last errors: Code=0x02 Voltage underflow Phase A: 222.18V, Phase B: 221.98V 0.01A. Phase C: 4.30V. 0.02A. ØW

Напряжение в фазе С – 4,3 В.

2.4 Отключение по счётчику количества отключений нагрузки

```
U min=160.00V, T=10.0 S, U max=260.00V, T= 0.5 S
P= 5000W, Lock=No; Power count mode=3
Hysteresis(Low power level)=99 %
T_on= 2s, T_off= 1s, Lock=No
Relay output mode=0
Counter: Passes= 3, Enable=Ves; Passes to off=
Last errors: Code=0x28
Power overflow Up
Counter stopped
Phase A: 223.47V, 8.01A, 1792W
Phase B: 223.75V, 8.00A, 1790W
Phase C: 224.87V, 7.93A, 1785W
```

При установленном счётчике С=3 нагрузка отключилась 3 раза.

2.5 Отключение по короткому замыканию или перегрузке по току

```
U min=160.00V, T=10.0 S, U max=260.00V, T=0.5 S
P= 5000W. Lock=No: Power count mode=3
Hysteresis(Low power level)=95 %
T on=
        2s, T_off=
                      1s, Lock=No
Relay output mode=0
Counter: Passes=
                   0, Enable=No
Last errors: Code=0x09
Short circuit
Power overflow Up
                  44.87A.
Phase A: 221.99V.
Phase B: 221.87V,
                  44.83A.
                           9948W
Phase C: 223.30V, 44.90A, 10026W
```

Превышение тока более чем в 6 раз от установленного значения мощности.

Рекомендации по установке параметров ограничителя

Ограничитель мощности может применяться:

1. Для защиты сети питания от перегрузки и от несанкционированного подключения посторонних потребителей электроэнергии (см. Режим 1, стр. 2).

2. Для защиты объектов (дом, коттедж, магазин и т.п.) от аварий в 3-х фазной сети питания (повышения/ понижения напряжения, обрыва нулевого провода), неисправности электрооборудования на объекте, приводящем к перегрузке по току или короткому замыканию в нагрузке, что нередко приводит к возгоранию электропроводки или самого электрооборудования.

При защите сети питания (пункт 1) необходимо устанавливать 3 или 2 варианты расчета мощности. Второй вариант, если сеть питания слабая и не допускает больших перекосов по нагрузке.

Нижний порог напряжения 160 В, время задержки 10-15 с, верхний 255-260 В, время 0,3-0,5 с. Если сеть питания слабая, при включении мощных нагрузок Ограничитель может отключаться по перепадам напряжения.

В этом случае необходимо отключить функцию реле напряжения, установив перемычку на клеммах 7-8 или оставить только верхний порог напряжения.

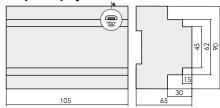
Время отключения по мощности установить не менее 15-20 с.

При работе с двумя с 2-мя нагрузками (режим 2, стр. 2) величину неприоритетной нагрузки рекомендуем устанавливать не более 25-30%, т.е. параметр Н должен быть не менее 70%.

При защите объекта от аварии в сети питания (пункт 2) надо устанавливать 1 вариант расчета. Порог отключения мощности установить равный или немного больший сумме мощностей всех потребителей электроэнергии. Ограничитель в этом случае будет работать как 3-х фазное реле тока с двумя порогами срабатывания:

1 – установленный на ограничителе, рассчитывается исходя из установленной мощности, время отключения Toff выставляется на лицевой панели. Рекомендуется устанавливать не более 10 с.

2 – в 6 раз больше установленного, время отключения 0,1 с. Для защиты от перепадов напряжения рекомендуются следующие параметры:


Верхний порог напряжения 250-255 В, время 0,1-0,3 с.

Нижний порог – 180 В, время 5-10 с.

Время повторного включения Топ 3-6 минут.

Для ограничения больших мощностей при работе с трансформаторами тока рекомендуется применять автоматические выключатели с мотор-приводом и установить соответствующий режим работы реле.

Размеры корпуса

Условия реализации и утилизации

Изделия реализуются через дилерскую сеть предприятия. Утилизировать как электронную технику.

Обслуживание

При техническом обслуживании изделия необходимо соблюдать «Правила техники безопасности и технической эксплуатации электроустановок потребителей».

При обнаружении видимых внешних повреждений корпуса изделия дальнейшая его эксплуатация запрещена.

Гарантийное обслуживание производится произво-дитемем изделия. Послегарантийное обслуживание изделия выполняется производителем по действующим тарифам. Перед отправкой на ремонт, изделие должно быть

Перед отправкой на ремонт, изделие должно быть упаковано в заводскую или другую упаковку, исключающую механические повреждения.

Условия эксплуатации

Климатическое исполнение УХЛ4, диапазон рабочих температур от -25...+50 °C, относительная влажность воздуха до 80% при 25°C. Рабочее положение в пространстве - произвольное. Высота над уровнем моря до 2000 м. Окружающая среда – взрывобезопасная, не содержащая пыли в количестве, нарушающем работу реле, а также агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию.

По устойчивости к перенапряжениям и электромагнитным помехам устройство соответствует ГОСТ IEC 60730-1.

20092022

Откроется окно программы

Ввести команду «/?», затем Enter – подсказка, как и какие параметры могут устанавливаться.

```
Press /? for help.
>set r 0
OK.
>set p 1 0 3
OK.
>set c 0
OK.
 >sot u 160 100 260 5
 Version date: Sep. 3, 2015-18-15-48
Banis Vetchero for 181-35-29 fcl. 8 56 Mail:attifibit.bu
U min 160-809, 1-18-8, U max 260-809, 1-18-5 S
Hosterexistion pomerteval 3-93 k
Look 190, 1-18-5 Look Nu
 >//
Rwaileble commands:
18-71 - Select the text debug mode:(Bext timter' - off)
SCT U (Unin.V(0-000)) ITime,S(0.5-20)-100ms] [Unan.V(0-000)] ITime,S(0.5-20)-100
ms]
 Relay output mode: 9-Dual relay, 1-Start/Stop(5s)
```

Приложение 3.

1. Установка параметров

1.1 Описание параметров Подключить компьютер к разъёму USB ограничителя. Подключить изделие к источнику питания. Напряжение

достаточно подать на одну из клемм L1...L3 и N.

Запустить программу «Hyper terminal» (см. приложение 2) Ввести команду «/?», затем нажать ENTER, на экране отображается подсказка устанавливаемых параметров и их значения, записанные в памяти устройства.

```
[10-7] - Select the test debug mode.(Mext 'Enter' - off]
| SET U [Umin.V(0-300)] [Time,$(0.5-20]-100ms] [Umux,V(0-300)] [Time,$(0.5-20]-100
Relay output mode: 0 Dual relay, 1 Start/Stop(5s)
```

1.2 SET U – установка порогов напряжения и времени отключения.

SET_U_200_150_250_10

200 — нижний порог напряжения. В: 150 — время отключения по нижнему порогу (требуемое значение в секундах, увеличенное в 10 раз).

250 – верхний порог напряжения.

10 – время отключения по верхнему порогу 1с (1х10=10).

1.3 SET P – установка мощности (W) Вт. отключение регуляторов на панели управления(Lock), определение варианта расчета мошности (mode 1-3). Пример:

Установить мощность 6.5 кВт, отключить регуляторы, установить 3 вариант расчета мощности.

SET_6500_1_3.

Если значение Lock=0, то включены регуляторы, и мошность устанавливается с панели управления. независимо, какое значение прописано в программе:

SET 6500 0 3.

1.4 SET H – установка значения мощности приоритетной нагрузки (режим 2, стр 2) в % от установленной или гистерезиса (режим 1 стр.2).

SÉT H 90

Если режим 1, значение гистерезиса Г=(100-Н)%=100-90=10%

Если режим 2, 90% - это мощность приоритетной нагрузки, 10% – неприоритетной нагрузки

При работе с приоритетной и неприоритетной нагрузкой для правильной работы параметр Н не должен превышать максимальное значения приоритетной нагрузки в %:

H<((P-PH)/P)x100%

Максимальная нагрузка P=10 кВт. из нее на неприоритетную нагрузку приходится 3 кВт.

Параметр H<((10-3)/10)х100%=70. Устанавливаем значение меньше 70%.

1.5 SET T – установка временных параметров и отключение регуляторов на панели управления.

SET_T_10_100_1

10 – время включения 10 c, 100 – время отключения 100 c, 1 регуляторы времени отключены.

SET.T.10,100,0

Регуляторы включены, временные задержки устанавливается с лицевой панели, независимо, какое значение прописано в программе:

1.6 SET R- установка режима работы реле К1, К2.

SET R 0

Режим работы с контакторами. SET R 1

Режим работы с мотор-приводом

1.7 SET C – установка счётчика. SET C 10

В счётчике записано число 10, после 10 отключений по перегрузке по мощности нагрузка к сети питания не подключается.

SET C 0

Счётчик не установлен, работает 10 минутный таймер циклической перегрузки.

1.8 SETE 0 – сброс ошибок и рестарт ограничителя.

После программирования параметров необходимо сделать сброс и рестарт изделия.

ВНИМАНИЕ!

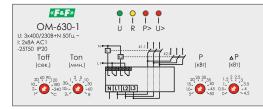
Все команды прописываются через пробел.

2 Сообщения о состоянии изделия и причинах отключения нагрузки.

Причина отключения нагрузки отображается в виде ошибок. 2.1 Отключение по превышению допустимой мошности: |U min=160.00V, T=10.0 S, U max=260.00V, T= 0.5 S P= 5000W, Lock=No; Power count mode=3 Hysteresis(Low power level)=99 % Power overflow Up

Phase A: 223.57V,

Phase B: 222.58V, Phase C: 222.56V, 8.04A, 1791W 7.98A. 1776W


Press /? for help.

При установленной мощности 5 кВт произошло отключение нагрузки.

2.2 Отключение по превышению напряжения в фазах. |U min=160.00V, T= 5.0 S, U max=230.00V, T= 0.5 S P= 5000W, Lock=No; Power count mode=3 Hysteresis(Low power level)=95 % 2s, T_off= 1s, Lock=No T on= Relay output mode=0 Counter: Passes= 0, Enable=No Last errors: Code=0x04 Voltage overflow Phase A: 248.75V, Phase B: 247.66V, 57W 0.22A 55W Phase C: 249.43V, 0.22A.

При установленном верхнем пороге напряжения 230 В произошло отключение нагрузки.

Панель управления и индикация

Toff - переключатель времени задержки отключения по мощности, 10 положений. В положении «С» происходит сброс счетчика числа отключений и установка его в исходное состояние.

Ton – переключатель времени повторного включения, 10 положений. В положении «R» происходит сброс изделия. отключение реле К1 и К2, возврат его в рабочее положение через 5 секунд после перевода в любое другое положение (сброс всех таймеров, ошибок).

Значение счетчика и причина последнего отключения нагрузки остаются в энергонезависимой памяти.

Р - переключатель установки мощности дискретностью 5 кВт

∆Р – переключатель установки мощности дискретностью 0,5 кВт.

Например:

Необходимо установить мощность 18,5 кВт. Переключателем 3 устанавливаем мощность 15 кВт. переключателем 4 устанавливаем мошность 3.5 кВт. Результирующая мощность будет:

15+3.5=18.5кВт

- **зеленый** светодиод U наличие питания:
- желтый светодиод R индикация включения нагрузки;
- красный светодиод Р> сигнализация о перегрузке по
- красный светодиод U> выход напряжения за установленные пределы

Режимы работы и состояние индикации						
Состояние изделия	Индикация					
	U	R	P>	U>		
Нормальный режим работы	•	•	0	0		
Отсчет времени повторного включения нагрузки, после отключения нагрузки	•	-Ċ-	0	0		
Отключение нагрузки на 10 минут (произошло 5 отключений подряд при перегрузке по мощности)	•	0	0	0		
Отключение нагрузки при перегрузке по току (короткое замыкание в цепях питания нагрузки)	•	0	-\\(\hat{\phi}\)	0		
Напряжение в сети питания ниже нормы, отсутствие одной из фаз	•	0	0	•		
Напряжение в сети питания выше нормы	•	0	0	Ö		
Отключение нагрузки по превышению мощности	•	0	•	0		

О - светодиод не светится: – светодиод светится;

- светодиод мигает;

Расчет значения отключаемой мошности

Расчёт может быть выполнен по одному из вариантов.

- 1. Пофазно, установленная мощность Руст. делится на 3 и при превышении этого значения в любой из фаз нагрузка отключается. Например, Руст.=15 кВт. При значении мошности Р>Руст./3=15/3=5 кВт нагрузка отключается.
- 2. Суммарно, с ограничением мощности в любой из фаз на уровне (2/5)хРуст.

Например, при Руст.=15 кВт нагрузка будет отключена при превышении значения (2/5)х15=6кВт, в одной из фаз или при сумме мощностей в фазах более 15 кВт (5,5+5,5+4,0) κBm.

3. Суммарно, определяется сумма мощностей в отдельных фазах, и при превышении значения Руст. нагрузка отключается (Ра+Рв+Рс>Руст.), где Ра.в.с мощность потребляемая в отдельных фазах. Например:

> Pvcm.=15 кВт. Ра=10кВт. Рв=6 кВт. Рс=0.0 P= Pa+Pe+Pc=10+6+0=16 кВт.

Р>Руст., нагрузка будет отключена.

Пофазный расчет рекомендуется применять при слабой питающей сети, не допускающей перегрузку по току. Суммарный расчет – при хорошей питающей сети и неравномерной нагрузке на отдельные фазы. Изменить вариант расчета можно установкой перемычки на клеммах 8-9. Если перемычки нет, включен вариант, записанный в памяти компьютера. При установке перемычки включается вариант 2 - суммарно, с ограничением мощности в любой из фаз.

Выбор варианта расчета устанавливается потребителем при программировании параметров на компьютере (см. Приложение 3, пункт 1.3). Рекомендации по установке параметров см. на стр. 7.

Контроль мощности менее 5 кВт

При необходимости контроля мощности менее 5 кВт необходимо сделать один или несколько витков провода питания нагрузки, пропустив его через сквозные отверстия в корпусе.

Например, необходимо контролировать мощность 3,5 кВт. Надо сделать по одному витку провода на каждую фазу (см. рисунок 3), при этом показания шкалы делятся на 2. Устанавливаем на ограничителе переключатель мощности в положение 7кВт, контролируемая мощность будет:

 $7:2 = 3.5 \text{ } \kappa\text{Bm}$

Контроль мощности более 50 кВт

Для контроля мощности более 50 кВт дополнительно с ограничителем применяются внешние стандартные трансформаторы тока (далее TT) с током вторичной обмотки 0,5-5 А, типа ТОР-066 или аналогичные (см. схемы подключения стр. 4).

Нужный TT выбирают исходя из максимальной мощности нагрузки, которую необходимо ограничить.

Коэффициент трансформации ТТ определяется по формуле:

К≥0,45 Рн, если установлен суммарный (вариант 3) расчет значения отключаемой мошности.

К≥0,35 Рн, если установлен пофазный (вариант 1) или суммарный с ограничением в фазе (вариант 2) расчет значения отключаемой мошности.

Рн – максимальная мощность нагрузки.

Так как максимальный ток вторичной обмотки ТТ не должен превышать 5 А, а нижнее значение тока срабатывания ограничителя >11 А, для достижения этого значения необходимо провода питания вторичных обмоток ТТ пропустить через отверстия в корпусе 2-4 раза (рис. 9).

Количество раз (витков) провода определяется по формуле:

N>5xK/P

где Р – мощность нагрузки, кВт.

Значение мощности, которое необходимо установить на ограничителе:

Pyct=(P×N)/K

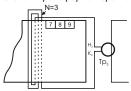
Например, необходимо ограничить мощность нагрузки на уровне 250 кВт, суммарный вариант расчета мощности.

Рассчитываем необходимый коэффициент TT:

K≥0.45×250=112.5

Выбираем ТТ 600/5 с коэффициентом трансформации К=120. Количество витков:

N≥5×120/250=2,4


Пропускаем 3 раза (т.е. N=3) провод от TT через отверстия в корпусе ограничителя.

Мощность, которую необходимо установить на ограничителе:

Pycm=(P×N)/K=(250×3)/120=6,25 κBm

Подключить компьютер к разьёму ОМ-630-1 в окне программы «Терминал» установить порог срабатывания 6,25 кВт (см. Приложение 3, пункт 1.3). — ввести команду «SET P 6250 1 3», где 6250 — мощность в Вт, 1 — отключение регуляторов, 3 — суммарный вариант расчета мощности.

Пример подключения трансформатора тока.

Схемы подключения

Схема включения с трансформаторами тока для контроле мощности более 50 кВт.

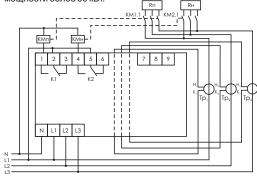
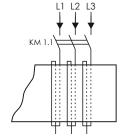



Схема включения при контроле мощности менее 5 кВт.

Подключение

- 1. Отключить питание.
- 2. Подключить нулевой провод к клемме N, фазовые провода, к клеммам L1, L2 и L3, соответственно. Подключить коммутационные аппараты в соответствии с одной из приведенных ранее схем подключения (клеммы 1-6).
- 3. Провода питания нагрузки пропустить через сквозные отверстия в корпусе, провод фазы **L1** в крайнее левое, фазы **L3** в правое.
- 4. Установить переключатели на лицевой панели в крайнее левое положение.
- 5. Включить питание. Должен загореться светодиод U, затем, через время Топ загореться желтый светодиод R и включиться нагрузка.

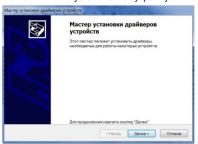
Подключение к ПК осуществляется посредством кабеля USB-micro USB. В обязательном порядке на ПК необходимо установить драйвер преобразователя COM-порта и приложение «Hyperterminal».

Файлы для установки:

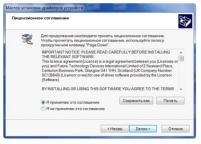
«Hyper terminal» – <u>http://fif.by/publication-files/get-item?id=47</u>.

Драйвер FTDICDM – <u>http://fif.by/publication-files/get-item?id=48.</u>

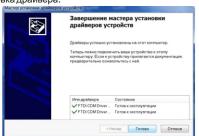
Или воспользуйтесь QR-кодами на обороте руководства.


Проверка работоспособности

- 1. Установить переключатель Топ в положение R, нагрузка должна отключиться, светодиод R погаснуть. Возвратить переключатель в исходное положение. Через 5 с нагрузка должна подключиться к сети питания.
- 2. Подключить к любой из фаз нагрузку более 5кВт при этом светодиод Р> должен загореться через 1 с, нагрузка должна отключиться, затем через время 2 с включиться.
- 3. Проверка функции счетчика числа отключений: установить переключатель Toff в положение «С», затем вернуть в исходное. Через 5 с нагрузка должна подключиться к сети питания. Повторить пункт 2. После заданного количества отключений нагрузка от сети питания отключается, мигает зеленый светодиод U. Сброс счетчика осуществляется установкой переключателя Toff в положение «С» и его возвратом в исходное положение.
- 4. Проверка функции блокировки на 10 минут: если счетчик числа отключений не установлен, включена функция блокировки нагрузки. Повторить пункт 2. Произвести 6 отключений нагрузки. После этого нагрузка отключается, горит зеленый светодиод, желтый гаснет. Нагрузка включается через 10 минут. Подключить нагрузку можно, установив переключатель Топ в положение «R» и вернув его в исходное состояние.
- 5.После проверки, если установлен счетчик числа отключений, обязательно обнулить его, установив переключатель Тоff в положение «С» и вернув его в исходное. Далее произвести сброс реле, установив переключатель Топ в положение «R». Установить заданные временные параметры и мощность. После отсчета заданного времени (отсчет индицируется миганием светодиода R) к сети питания подключается нагрузка, загораются светодиоды U и R.

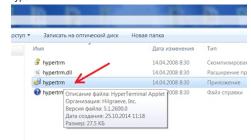

Приложение 1

Установка драйвера FTDICDM


Запустить мастер установки драйверов, щёлкнув два раза левой кнопкой мыши по установочному файлу.

Нажать «Далее»

Принять соглашение, нажать «Далее», происходит установка драйвера.

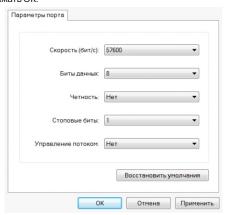


Нажать «Готово».

Приложение 2

Подключить компьютер к разъёму USB ограничителя, затем подключить его к источнику питания. Достаточно подать напряжение на один из зажимов L1...L3 и N.

- 1.Распаковать архив
- 2.Открыть папку «Hyperterminal», найти и запустить файл «Hypertrm».


Создать новое подключение, например ОМ-630-1

Нажать ОК. Должен автоматически определиться виртуальный СОМ порт.

Нажать ОК

Настроить параметры соединения как указано на рисунке. Нажать ОК.

5